Evolusi Arsitektur Komputer

Perkembangan Arsitektur Komputer



   
  Arsitektur komputer  dapat didefinisikan dan dikategorikan sebagai ilmu dan sekaligus seni mengenai cara interkoneksi komponen-komponen perangkat keras untuk dapat menciptakan sebuah komputer yang memenuhi kebutuhan fungsional, kinerja, dan target biayanya. Dalam bidang teknik komputer, arsitektur komputer adalah konsep perencanaan dan struktur pengoperasian dasar dari suatu sistem komputer. Arsitektur komputer ini merupakan rencana cetak-biru dan deskripsi fungsional dari kebutuhan bagian perangkat keras yang didesain (kecepatan proses dan sistem interkoneksinya). Dalam hal ini, implementasi perencanaan dari masing–masing bagian akan lebih difokuskan terutama, mengenai bagaimana CPU akan bekerja, dan mengenai cara pengaksesan data dan alamat dari dan ke memori cache, RAM, ROM, cakram keras, dll).

   Di antara demikian banyak pemahaman tentang arsitektur, arsitektur dikenal juga sebagai suatu tradisi yang berkembang. Dari waktu ke waktu wajah arsitektur selalu mengalami perubahan. Hal-hal yang mempengaruhi perkembangan dan pengembangan arsitektur tidak hanya berupa keadaan eksternal, tetapi juga keadaan internal. Disini kita membahas mengenai evolusi arsitektur pada komputer. Arsitektur dari komputer sendiri merupakan suatu susunan atau rancangan dari komputer tersebut sehingga membentuk suatu kesatuan yang dinamakan komputer. Komputer sendiri berevolusi dengan cepat mulai dari generasi pertama hingga sekarang. Evolusi sendiri didasarkan pada fungsi atau kegunaanya dalam kehidupan. Evolusi pada komputer sendiri ada karena keinginan atau hal yang dibutuhkan manusia itu sendiri. Sekarang ini komputer sudah dapat melakaukan perintah yang sulit sekalipun tidak seperti dulu yang hanya bisa melakukan yang sederhana saja. Itulah yang dinamakan evolusi arsitektur yaitu perubahan bentuk juga fungsi dan kemampuannya.

KLASIFIKASI ARSITEKTUR KOMPUTER

1. Arsitektur Von Neumann

     Arsitektur von Neumann (atau Mesin Von Neumann) adalah arsitektur yang diciptakan oleh John von Neumann (1903-1957). Arsitektur ini digunakan oleh hampir semua komputer saat ini. Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: Unit Aritmatika dan Logis (ALU), unit kontrol, memori, dan alat masukan dan hasil (secara kolektif dinamakan I/O). Bagian ini dihubungkan oleh berkas kawat, “bus”.



2. Arsitektur RISC

  RICS singkatan dari Reduced Instruction Set Computer. Merupakan bagian dari arsitektur mikroprosessor, berbentuk kecil dan berfungsi untuk negeset istruksi dalam komunikasi diantara arsitektur yang lainnya. Reduced Instruction Set Computing (RISC) atau “Komputasi set instruksi yang disederhanakan” pertama kali digagas oleh John Cocke, peneliti dari IBM di Yorktown, New York pada tahun 1974 saat ia membuktikan bahwa sekitar 20% instruksi pada sebuah prosesor ternyata menangani sekitar 80% dari keseluruhan kerjanya. Komputer pertama yang menggunakan konsep RISC ini adalah IBM PC/XT pada era 1980-an. Istilah RISC sendiri pertama kali dipopulerkan oleh David Patterson,pengajar pada University of California di Berkely.




Karakteristik RISC

  • Siklus mesin ditentukan oleh waktu yang digunakan untuk mengambil dua buah operand dari register, melakukan operasi ALU, dan menyimpan hasil operasinya kedalam register, dengan demikian instruksi mesin RISC tidak boleh lebih kompleks dan harus dapat mengeksekusi secepat mikroinstruksi pada mesin-mesin CISC
  • Operasi berbentuk dari register-ke register yang hanya terdiri dari operasi load dan store yang mengakses memori . Fitur rancangan ini menyederhanakan set instruksi sehingga menyederhanakan pula unit control
  • Penggunaan mode pengalamatan sederhana, hampir sama dengan instruksi menggunakan pengalamatan register.
  • Penggunaan format-format instruksi sederhana, panjang instruksinya tetap dan disesuaikan dengan panjang word.


3. Arsitektur CISC

   Complex instruction-set computing atau Complex Instruction-Set Computer (CISC) “Kumpulan instruksi komputasi kompleks”) adalah sebuah arsitektur dari set instruksi dimana setiap instruksi akan menjalankan beberapa operasi tingkat rendah, seperti pengambilan dari memory, operasi aritmetika, dan penyimpanan ke dalam memory, semuanya sekaligus hanya di dalam sebuah instruksi. Karakteristik CISC dapat dikatakan bertolak-belakang dengan RISC.

  Sebelum proses RISC didesain untuk pertama kalinya, banyak arsitek komputer mencoba menjembatani celah semantik”, yaitu bagaimana cara untuk membuat set-set instruksi untuk mempermudah pemrograman level tinggi dengan menyediakan instruksi “level tinggi” seperti pemanggilan procedure, proses pengulangan dan mode-mode pengalamatan kompleks sehingga struktur data dan akses array dapat dikombinasikan dengan sebuah instruksi. Karakteristik CISC yg “sarat informasi” ini memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat.

    Memang setelah itu banyak desain yang memberikan hasil yang lebih baik dengan biaya yang lebih rendah, dan juga mengakibatkan pemrograman level tinggi menjadi lebih sederhana, tetapi pada kenyataannya tidaklah selalu demikian. Contohnya, arsitektur kompleks yang didesain dengan kurang baik (yang menggunakan kode-kode mikro untuk mengakses fungsi-fungsi hardware), akan berada pada situasi di mana akan lebih mudah untuk meningkatkan performansi dengan tidak menggunakan instruksi yang kompleks (seperti instruksi pemanggilan procedure), tetapi dengan menggunakan urutan instruksi yang sederhana.

   Istilah RISC dan CISC saat ini kurang dikenal, setelah melihat perkembangan lebih lanjut dari desain dan implementasi baik CISC dan CISC. Implementasi CISC paralel untuk pertama kalinya, seperti 486 dari Intel, AMD, Cyrix, dan IBM telah mendukung setiap instruksi yang digunakan oleh prosesor-prosesor sebelumnya, meskipun efisiensi tertingginya hanya saat digunakan pada subset x86 yang sederhana (mirip dengan set instruksi RISC, tetapi tanpa batasan penyimpanan/pengambilan data dari RISC).

    Prosesor-prosesor modern x86 juga telah menyandikan dan membagi lebih banyak lagi instruksi-instruksi kompleks menjadi beberapa “operasi-mikro” internal yang lebih kecil sehingga dapat instruksi-instruksi tersebut dapat dilakukan secara paralel, sehingga mencapai performansi tinggi pada subset instruksi yang lebih besar.




Karakteristik CISC

  Sarat informasi memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat. Dimaksudkan untuk meminimumkan jumlah perintah yang diperlukan untuk mengerjakan pekerjaan yang diberikan. (Jumlah perintah sedikit tetapi rumit) Konsep CISC menjadikan mesin mudah untuk diprogram dalam bahasa rakitan.

4. Arsitektur Harvard

   Arsitektur Havard menggunakan memori terpisah untuk program dan data dengan alamat dan bus data yang berdiri sendiri. Karena dua perbedaan aliran data dan alamat, maka tidak  diperlukan multiplexing  alamat dan bus data. Arsitektur ini tidak hanya didukung dengan bus paralel untuk alamat dan data, tetapi juga menyediakanorganisasiinternal yang  berbeda sedemikian rupa instruksi dapat diambil dan dikodekan ketika dan data, tetapi juga menyediakan organisasi internal yang  berbeda sedemikian rupa instruksi dapaLebih lanjut lagi, bus data bisa saja memiliki ukuran yang berbeda  dari bus alamat.



   Hal ini memungkinkan pengoptimalan bus data dan bus alamat dalam pengeksekusian instruksi yang cepat.t diambil dan dikodekan ketika berbagai data sedang diambil dan dioperasikan. Sebagai contoh, mikrokontroler Intel keluarga MCS-51 menggunakan arsitektur Havard karena ada perbedaan kapasitas memori untuk program dan data, dan bus terpisah (internal) untuk alamat dan data.  Begitu juga dengan keluarga PIC dari Microchip yang menggunakan arsitektur Havard.

5. Arsitektur Blue Gene

   Blue Gene adalah sebuah arsitektur komputer yang dirancang untuk menciptakan beberapa superkomputer generasi berikut, yang dirancang untuk mencapai kecepatan operasi petaflop (1 peta = 10 pangkat 15), dan pada 2005 telah mencapai kecepatan lebih dari 100 teraflop (1 tera = 10 pangkat 12). Blue Gene merupakan proyek antara Departemen Energi Amerika Serikat (yang membiayai projek ini), industri (terutama IBM), dan kalangan akademi. Ada lima projek Blue Gene dalam pengembangan saat ini, di antaranya adalah Blue Gene/L, Blue Gene/C, dan Blue Gene/P.

     Komputer pertama dalam seri Blue Gene. Blue Gene/L dikembangkan melalui sebuah “partnership” dengan Lawrence Livermore National Laboratory menghabiskan biaya AS$100 juta dan direncanakan dapat mencapai kecepatan ratusan TFLOPS, dengan kecepatan puncak teoritis 360 TFLOPS. Ini hampir sepuluh kali lebih cepat dari Earth Simulator, superkomputer tercepat di dunia sebelum Blue Gene. Pada Juni 2004, dua prototipe Blue Gene/L masuk dalam peringkat 500 besar superkomputer berada dalam posisi ke-4 dan ke-8.

     Pada 29 September 2004 IBM mengumumkan bahwa sebuah prototipe Blue Gene/L di IBM Rochester (Minnesota) telah menyusul Earth Simulator NEC sebagai komputer tercepat di dunia, dengan kecepatan 36,01 TFLOPS, mengalahkan Earth Simulator yang memiliki kecepatan 35,86 TFLOPS. Mesin ini kemudian mencapai kecepatan 70,72.


    Pada 24 Maret 2005, Departemen Energi AS mengumumkan bahwa Blue Gene/L memecahkan rekor komputer tercepat mencapai 135,5 TFLOPS. Hal ini dimungkinkan karena menambah jumlah rak menjadi 32 dengan setiap rak berisi 1.024 node komputasi. Ini masih merupakan setengah dari konfigurasi final yang direncanakan mencapai 65.536 node. Pada 27 Oktober, 2005, Lawrence Livermore National Laboratory dan IBM mengumumkan bahwa Blue Gene/L sekali lagi telah menciptakan rekor dengan mengalahkan rekornya sendiri setelah mencapai kecepatan 280.6 TFLOPS.

Sumber :

Komentar

Postingan populer dari blog ini

Flora dan Fauna Khas 34 Provinsi di Indonesia

Counter UP dan Counter DOWN